

The Effects of On-Site Sewage Systems on Ground Water Quality

Melanie Kimsey

Washington State Department of Ecology Water Quality Program Southwest Regional Office

On-Site Sewage Systems

- One of the most effective means of treating and disposing of domestic wastewater
- Most prevalent source of ground water contamination
- Contributes the greatest volume of wastewater to ground water
- Most frequently reported sources of contamination

Conventional onsite wastewater treatment system

Nitrate

- Nitrate contamination of Washington State's aquifers is the most widespread problem
- ◆ Estimated 10-15% of drinking water supply wells exceed standard of 10 mg N/1
- Single domestic wells have higher risk of contamination

Factors that Affect Ground Water Contamination:

- Density of households
- Contaminant loading
- Geology and soil type
- Hydrogeologic characteristics
- Ambient ground water quality
- Climate

Factors affecting ground water quality

- Mass Loading
 - Volume of wastewater
 - Number of people per household
 - Nitrogen mass
- Aquifer characteristics
 - Aquifer media
 - Hydraulic conductivity
 - Hydraulic gradient
 - Mixing zone boundaries

Evaluate the degree to which on-site sewage systems contribute to ground water quality degradation in various hydrogeologic environments

- Variable:
 - Aquifer Material
- Constants:
 - shallow aquifer
 - climate
 - type of OSS system
 - wastewater loading

Study Design

- ♦ 3 sites
 - 4 monitor wells
 - ◆ 1 upgradient
 - 3 downgradient
 - 2 lysimeters
 - effluent monitoring
- Quarterly monitoring for 2 years

Monitor Well Installation

Monitored Parameters

- Total Nitrogen
- Fecal Coliform Bacteria
- Metals
- Cations / Anions
- ♦ VOC's
- MBAS
- Field Parameters

Domestic Wastewater Characteristics

- Total Nitrogen (43 mg/l)
- Chloride (57 mg/l)
- ◆ Lead (0.161 mg/l)
- ◆ Zinc (5.7 mg/l)
- ◆ Cadmium (0.007 mg/l)
- Mercury
- Total Phenol
- Total Benzene
- ◆ Toluene (32 ug/l)
- Chloroform (0.77 ug/l)
- Trichloroethylene
- Tetrachloroethylene
- Methylene Chloride

- ◆ 35 100 mg/l
- ◆ 30 100 mg/l
- 0.96 0.0065 mg/l
- 0.66 0.016 mg/1
- 0.007 0.00016 mg/l
- 0.0023 0.0002 mg/1
- ◆ 13 22 ug/l
- 2.3 2.4 ug/1
- 4.3 5.4 ug/1
- 0.7 5.3 ug/1
- 0 150 ug/1
- ◆ 2.6 100 ug/l
- 0 400 ug/1

Site O

- Fine sand aquifer
- ◆1 acre lot
- 4 people/house
- no fertilizer use
- ◆ 50.8 in/yr precipitation

Site O -- Ground Water Elevation

Site O -- Chloride

Site O -- Total Nitrogen

Total Nitrogen

% Contaminant Reduction

<u>TN</u>	Cl	TDS		
effluent				
50	39	31		
lysimeter				
96	92	77		

% Contaminant Increase in Downgradient Wells

NO3	TN	Cl	TDS	
upgradient				
0.57	0.61	2.2	57	
42	37	12	3%	
0.99	0.96	2.48	59	
downgradient				

Metals

Methylene Blue Activated Substances

- Indicator of septage
- By-product of detergents
- Present in ground water (0.042 mg/l)
- Soil-pore water (0.188 mg/l)

Things that live in a drop of water, and some of their furniture.

Conclusions

- On-site sewage systems provide effective treatment of domestic wastewater.....as long as the system is:
 - appropriately located
 - designed
 - constructed, and
 - maintained

Conclusions

- Assimilative capacity of ground water is necessary to reduce wastewater concentrations entering ground water to acceptable levels.
- Contaminant loading should be managed through treatment or by appropriate siting criteria

Barbara Carey aka Lysimeter Queen

Department of Ecology

Melanie B. Kimsey Hydrogeologist

Washington State Department of Ecology
Water Quality Program
Southwest Regional Office
(360) 407-6368